3.38 \(\int \frac{\csc ^2(e+f x)}{a+b \sec ^2(e+f x)} \, dx\)

Optimal. Leaf size=54 \[ -\frac{\sqrt{b} \tan ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a+b}}\right )}{f (a+b)^{3/2}}-\frac{\cot (e+f x)}{f (a+b)} \]

[Out]

-((Sqrt[b]*ArcTan[(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b]])/((a + b)^(3/2)*f)) - Cot[e + f*x]/((a + b)*f)

________________________________________________________________________________________

Rubi [A]  time = 0.0729386, antiderivative size = 54, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.13, Rules used = {4132, 325, 205} \[ -\frac{\sqrt{b} \tan ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a+b}}\right )}{f (a+b)^{3/2}}-\frac{\cot (e+f x)}{f (a+b)} \]

Antiderivative was successfully verified.

[In]

Int[Csc[e + f*x]^2/(a + b*Sec[e + f*x]^2),x]

[Out]

-((Sqrt[b]*ArcTan[(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b]])/((a + b)^(3/2)*f)) - Cot[e + f*x]/((a + b)*f)

Rule 4132

Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*sin[(e_.) + (f_.)*(x_)]^(m_), x_Symbol] :> With[{ff = Fr
eeFactors[Tan[e + f*x], x]}, Dist[ff^(m + 1)/f, Subst[Int[(x^m*ExpandToSum[a + b*(1 + ff^2*x^2)^(n/2), x]^p)/(
1 + ff^2*x^2)^(m/2 + 1), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] && Integer
Q[n/2]

Rule 325

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a*
c*(m + 1)), x] - Dist[(b*(m + n*(p + 1) + 1))/(a*c^n*(m + 1)), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\csc ^2(e+f x)}{a+b \sec ^2(e+f x)} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{1}{x^2 \left (a+b+b x^2\right )} \, dx,x,\tan (e+f x)\right )}{f}\\ &=-\frac{\cot (e+f x)}{(a+b) f}-\frac{b \operatorname{Subst}\left (\int \frac{1}{a+b+b x^2} \, dx,x,\tan (e+f x)\right )}{(a+b) f}\\ &=-\frac{\sqrt{b} \tan ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a+b}}\right )}{(a+b)^{3/2} f}-\frac{\cot (e+f x)}{(a+b) f}\\ \end{align*}

Mathematica [C]  time = 0.670154, size = 189, normalized size = 3.5 \[ \frac{\sec ^2(e+f x) (a \cos (2 (e+f x))+a+2 b) \left (\sqrt{a+b} \csc (e) \sin (f x) \sqrt{b (\cos (e)-i \sin (e))^4} \csc (e+f x)+b (\cos (2 e)-i \sin (2 e)) \tan ^{-1}\left (\frac{(\cos (2 e)-i \sin (2 e)) \sec (f x) (a \sin (2 e+f x)-(a+2 b) \sin (f x))}{2 \sqrt{a+b} \sqrt{b (\cos (e)-i \sin (e))^4}}\right )\right )}{2 f (a+b)^{3/2} \sqrt{b (\cos (e)-i \sin (e))^4} \left (a+b \sec ^2(e+f x)\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[Csc[e + f*x]^2/(a + b*Sec[e + f*x]^2),x]

[Out]

((a + 2*b + a*Cos[2*(e + f*x)])*Sec[e + f*x]^2*(b*ArcTan[(Sec[f*x]*(Cos[2*e] - I*Sin[2*e])*(-((a + 2*b)*Sin[f*
x]) + a*Sin[2*e + f*x]))/(2*Sqrt[a + b]*Sqrt[b*(Cos[e] - I*Sin[e])^4])]*(Cos[2*e] - I*Sin[2*e]) + Sqrt[a + b]*
Csc[e]*Csc[e + f*x]*Sqrt[b*(Cos[e] - I*Sin[e])^4]*Sin[f*x]))/(2*(a + b)^(3/2)*f*(a + b*Sec[e + f*x]^2)*Sqrt[b*
(Cos[e] - I*Sin[e])^4])

________________________________________________________________________________________

Maple [A]  time = 0.084, size = 54, normalized size = 1. \begin{align*} -{\frac{1}{f \left ( a+b \right ) \tan \left ( fx+e \right ) }}-{\frac{b}{f \left ( a+b \right ) }\arctan \left ({\tan \left ( fx+e \right ) b{\frac{1}{\sqrt{ \left ( a+b \right ) b}}}} \right ){\frac{1}{\sqrt{ \left ( a+b \right ) b}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csc(f*x+e)^2/(a+b*sec(f*x+e)^2),x)

[Out]

-1/f/(a+b)/tan(f*x+e)-1/f*b/(a+b)/((a+b)*b)^(1/2)*arctan(tan(f*x+e)*b/((a+b)*b)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^2/(a+b*sec(f*x+e)^2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 0.555723, size = 655, normalized size = 12.13 \begin{align*} \left [\frac{\sqrt{-\frac{b}{a + b}} \log \left (\frac{{\left (a^{2} + 8 \, a b + 8 \, b^{2}\right )} \cos \left (f x + e\right )^{4} - 2 \,{\left (3 \, a b + 4 \, b^{2}\right )} \cos \left (f x + e\right )^{2} + 4 \,{\left ({\left (a^{2} + 3 \, a b + 2 \, b^{2}\right )} \cos \left (f x + e\right )^{3} -{\left (a b + b^{2}\right )} \cos \left (f x + e\right )\right )} \sqrt{-\frac{b}{a + b}} \sin \left (f x + e\right ) + b^{2}}{a^{2} \cos \left (f x + e\right )^{4} + 2 \, a b \cos \left (f x + e\right )^{2} + b^{2}}\right ) \sin \left (f x + e\right ) - 4 \, \cos \left (f x + e\right )}{4 \,{\left (a + b\right )} f \sin \left (f x + e\right )}, \frac{\sqrt{\frac{b}{a + b}} \arctan \left (\frac{{\left ({\left (a + 2 \, b\right )} \cos \left (f x + e\right )^{2} - b\right )} \sqrt{\frac{b}{a + b}}}{2 \, b \cos \left (f x + e\right ) \sin \left (f x + e\right )}\right ) \sin \left (f x + e\right ) - 2 \, \cos \left (f x + e\right )}{2 \,{\left (a + b\right )} f \sin \left (f x + e\right )}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^2/(a+b*sec(f*x+e)^2),x, algorithm="fricas")

[Out]

[1/4*(sqrt(-b/(a + b))*log(((a^2 + 8*a*b + 8*b^2)*cos(f*x + e)^4 - 2*(3*a*b + 4*b^2)*cos(f*x + e)^2 + 4*((a^2
+ 3*a*b + 2*b^2)*cos(f*x + e)^3 - (a*b + b^2)*cos(f*x + e))*sqrt(-b/(a + b))*sin(f*x + e) + b^2)/(a^2*cos(f*x
+ e)^4 + 2*a*b*cos(f*x + e)^2 + b^2))*sin(f*x + e) - 4*cos(f*x + e))/((a + b)*f*sin(f*x + e)), 1/2*(sqrt(b/(a
+ b))*arctan(1/2*((a + 2*b)*cos(f*x + e)^2 - b)*sqrt(b/(a + b))/(b*cos(f*x + e)*sin(f*x + e)))*sin(f*x + e) -
2*cos(f*x + e))/((a + b)*f*sin(f*x + e))]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\csc ^{2}{\left (e + f x \right )}}{a + b \sec ^{2}{\left (e + f x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)**2/(a+b*sec(f*x+e)**2),x)

[Out]

Integral(csc(e + f*x)**2/(a + b*sec(e + f*x)**2), x)

________________________________________________________________________________________

Giac [A]  time = 1.2738, size = 100, normalized size = 1.85 \begin{align*} -\frac{\frac{{\left (\pi \left \lfloor \frac{f x + e}{\pi } + \frac{1}{2} \right \rfloor \mathrm{sgn}\left (b\right ) + \arctan \left (\frac{b \tan \left (f x + e\right )}{\sqrt{a b + b^{2}}}\right )\right )} b}{\sqrt{a b + b^{2}}{\left (a + b\right )}} + \frac{1}{{\left (a + b\right )} \tan \left (f x + e\right )}}{f} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^2/(a+b*sec(f*x+e)^2),x, algorithm="giac")

[Out]

-((pi*floor((f*x + e)/pi + 1/2)*sgn(b) + arctan(b*tan(f*x + e)/sqrt(a*b + b^2)))*b/(sqrt(a*b + b^2)*(a + b)) +
 1/((a + b)*tan(f*x + e)))/f